Изготовление солнечного коллектора своими руками подробная инструкция. Как сделать солнечный коллектор своими руками? Изготовление: пошаговые действия

  • Дата: 05.09.2023

Всевозможные солнечные коллекторы разрабатываются с применением новейших технологий и современных материалов. Благодаря таким устройствам происходит преобразование солнечной энергии . Полученная энергия может нагревать воду, отапливать помещения, теплицы и оранжереи.

Аппараты можно укреплять на стенах, крышах частного дома, теплицы . Для больших помещений рекомендовано приобретать фабричные устройства. Сейчас гелиосистемы постоянно совершенствуются. Поэтому солнечные батареи сильно подают в цене, привлекая внимание потребителей. Стоимость фабричных устройств почти равноценна финансовым затратам, потраченным на их изготовление. Повышение цены происходит только из-за финансовой накрутки перекупщиков. Стоимость коллектора соизмерима с денежными затратами, которые потребуются на установку классической системы отопления.

Аппараты можно соорудить своими руками.

На сегодняшний момент изготовление таких устройств набирает все большую популярность. Стоит заметить, что эффективность самодельного аппарата по своему качеству сильно уступает фабричным устройствам . Но обогреть небольшое помещение, частный дом или хозяйственные постройки агрегат, выполненный своими руками, может легко и быстро.

Вводное видео об устройстве водонагревателя

Принцип работы

На сегодняшний момент разработаны различные виды гелиоколлекторов.

Но принцип водонагрева идентичен – все устройства работают по одной разработанной схеме . В хорошую погоду лучи солнца начинают нагревать теплоноситель. Он проходит по тонким изящным трубочкам, попадая в бак с жидкостью. Теплоноситель и трубочки размещаются по всей внутренней поверхности бака. Благодаря такому принципу происходит нагревание жидкости, находящейся в аппарате. Позже нагретую воду разрешено применять на бытовые нужды. Таким образом, можно отапливать помещение, использовать нагретую жидкость для душевых кабин как горячее водоснабжение.

Температуру воды можно контролировать разработанными датчиками. Если произошло слишком сильное охлаждение жидкости, ниже заданного уровня, то автоматически включится специальный резервный подогрев. Солнечный коллектор можно подключить к электрическому или газовому котлу.

Представлена схема работы, подходящая для всех солнечных водонагревателей. Такое устройство отлично подойдет для отопления небольшого частного дома. На сегодняшний момент разработано несколько устройств: плоские, вакуумные и воздушные приспособления. Принцип действия таких устройств очень схож. Происходит нагрев теплоносителя от солнечных лучей с дальнейшей отдачей энергии. Но в работе наблюдается очень много различий.

Видео о различных видах альтернативных источниках отопления

Плоский коллектор

Нагревание теплоносителя в таком устройстве происходит благодаря пластинчатому абсорберу. Он представляет собой плоскую пластину теплоемкого металла. Верхняя поверхность пластины в темный оттенок специально разработанной краской. К нижней части устройства приварена змеевидная трубка.

С каждым годом все более актуальной становиться проблема обеспечения своего загородного дома или дачи горячей водой. Особенно часто над этой проблемой размышляют хозяева коттеджей, в которых они проживают постоянно. Ведь затраты на отопление и горячее водоснабжение занимают весомую долю в финансировании жизнеобеспечения жилища. И поиск возможностей сократить затраты на содержание дома – это нормальное и естественное желание любого человека. Разумеется, самый реальный вариант снизить затраты в части отопления дома, изучить и начать изготовление своими руками устройства из области альтернативной энергетики.

О том что селективное устройство возобновляемой энергетики, примененное для отопления дома, имеет множество неоспоримых преимуществ известно давно, и о нем знает практически каждый взрослый человек. Однако на практике не каждый из этих взрослых людей, имеющих желание стать более автономными в вопросах осуществления нагрева воды, решается выложить приличную сумму денег, чтобы приобрести селективное устройство для отопления дома фабричного изготовления. Конечно, из любой ситуации можно найти выход, а из этой тем более. Солнечный коллектор для отопления дома можно сделать своими руками. Вы без проблем самостоятельно соберете плоский, воздушный солнечный коллектор. Такие самодельные устройства для нагрева воды с помощью солнечной энергии можно сделать из пивных банок и пластиковых бутылок, соединяя их при помощи шланга, подводя вакуумные трубки. В результате вы получите абсорбер солнечной энергии для отопления дома путем нагрева воды, изготовление которого не потребует от вас практически никаких финансовых вложений (особенно при выборе варианта из жестяных банок).


Какие материалы потребуются вам, чтобы изготовить самодельный абсорбер

Обычному обывателю кажется, что самостоятельно изготовить абсорбер на солнечной энергии для отопления своего дома, проведя собственноручное изготовление каждой детали, составляющей устройство, невероятно сложная задача. Однако, для того чтобы сделать подобный абсорбер, который будет выступать как устройство для нагрева воды в системе отопления дома, не нужно приобретение или поиск каких-то экзотических материалов. Вам не придется объездить уйму магазинов в поисках нужного шланга, разыскивая вакуумные трубки. Не переживайте – это все домыслы лентяев и людей, боящихся взяться за дело. Главное, взвешенно подойти к решению проблемы, правильно все спланировать, нарисовать схему и подобрать необходимые материалы.


Самодельный плоский воздушный абсорбер с нанесенным селективным покрытием можно изготовить из обычных материалов и компонентов ПНД. Вакуумные трубы из поликарбоната и другие детали можно приобрести по небольшим ценам в любом хозяйственном магазине или супермаркете. Схема для сборки довольно простая, в целях обучения можно просмотреть видео во всемирной сети (таких видео там более чем достаточно). На самом деле в глобальной сети можно найти много специализированной литературы по данной проблеме. Если вы решили сделать задуманную работу на качественно высоком уровне, прочтение определенного количества литературы не станет лишним.

Основная трудность в процессе сборки состоит в том, как именно сделать змеевик (это трубка в извилистой форме, по которой циркулирует жидкость, осуществляя накопление энергии). Здесь есть несколько вариантов исходя из которых, будет составлена схема сборки. Самый простой вариант собрать абсорбер на основе готового змеевика (можно попробовать поискать что ни будь, подходящее для этих целей, важно, чтобы он был вакуумный). Как вариант, может подойти система циркуляции, расположенная на задней стенке холодильника. Второй вариант – это подобрать нужные вакуумные трубки, два-три шланга, пару пластиковых бутылок воды (из них собирается теплоноситель). Для большей уверенности еще раз просмотрите обучающее видео. Трубки для нагрева воды лучше использовать медные. Далее вам потребуется заняться пайкой непосредственно змеевика.


Второй очень значимый элемент, который входит в абсорбер – это верхняя сторона из прозрачного поликарбоната. В условиях промышленного производства покрытие из поликарбоната не используется, лицевое покрытие отливают из закаленного стеклянного сплава. Однако в нашем случае рассматривается самодельный воздушный коллектор, тепловая схема и требуемая эффективность которого допускает использование поликарбоната, так как собирать устройство мы будем из подручных недорогих материалов. Стоит отметить, что существуют схемы сборки где применяют материалы начиная от пивных банок, и заканчивая применением пластиковых бутылок.


Подготовка к сборке абсорбера

Итак, в сборке своего устройства вам лучше прибегнуть к использованию сотового прозрачного поликарбоната. Применение такого вида поликарбоната позволит добиться максимальной эффективности нагрева от создаваемого устройства. Сделать выбор в пользу этого поликарбоната стоит еще и потому, что он очень прочный. Это немаловажно, учитывая возможные погодные катаклизмы, такие как крупный град, ураганный воздушный поток, который срывает ветки с деревьев – эти случайности надо учитывать, так как они способны повредить слабое покрытие. Сотовая структура покрытия поможет вам сделать воздушный эффект парника, в результате создавая усиленный момент нагрева воды в трубках. Проще говоря, применив этот материал и в дополнение к нему селективное покрытие, вы значительно повысите эффективность изделия.


Для абсорбирующей панели вам будет нужен лист металла толщиной около 0,8 миллиметров (однако, лучше подойдет медный материал). В принципе сойдет и стальной лист. На внешнюю поверхность надо будет нанести так называемое селективное покрытие (выкрасить матовой черной краской, краска должна быть стойкой к высоким температурам). Если не соблюдать эти рекомендации (черное покрытие тоже имеется в виду), устройство не будет функционировать в правильном режиме.

В дополнение к перечисленным компонентам приобретите необходимую для теплоизоляции минеральную вату, она создаст своеобразный воздушный капкан, максимально снижая теплообмен с окружающим пространством, передавая все тепло в змеевик, а далее посредством шланга, в систему отопления дома.


Корпус устройства вы тоже сможете собрать самостоятельно, для этого вам надо использовать алюминиевые материалы или использовать менее долговечный, но легче поддающийся обработке деревянный материал. Работая с деревом, вы потратите значительно меньше времени на создание обогревателя, а с фанерой работать еще легче. Но все-таки лучше использовать раму из алюминия, ее долговечность, в сравнении с деревом, не идет ни в какое сравнение.

Определяемся с размерами коллектора

Теперь подведем итог, перечислим все необходимые для сборки эффективного самодельного коллектора материалы:

  • Трубки из меди размерами 18 миллиметров – из них вы будете формировать змеевик (такие же трубки используют при сборке отопительных систем);
  • черная матовая краска, стойкая к высоким температурам (при ее помощи вы нанесете селективное покрытие);
  • минеральная вата (теплоизоляция);
  • лист металла (медь, железо, сталь), толщина листа 0,8 миллиметров в толщину;
  • угловые переходы 18 х 18 миллиметров;
  • сантехнические переходы 18 мм х ¾ (нужны для того чтобы подключить к системе водоснабжения);
  • сотовый поликарбонат (лицевое покрытие коллектора);
  • лист алюминия и алюминиевые уголки для создания корпуса изделия, в случае отсутствия таковых – деревянные планки и лист фанеры для задней стены нагревателя;
  • все необходимые для проведения паяльных работ инструменты.


Важно заранее определиться с габаритами вашего коллектора исходя из его размеров, заранее рассчитайте требуемое количество трубок, переходов и других материалов (проще говоря, общую производительность монтируемого устройства). Вычислите количество воды, которое потребуется для обеспечения теплового обмена во всей системе. Чтобы это сделать определитесь заранее, в каких целях будет использоваться коллектор – либо это только помывка посуды, либо для душа, либо для обеспечения покрытия всех хозяйственных нужд горячего водоснабжения в вашем доме. Для подогрева воды в целях помывки посуды или принятия душа будет достаточно собрать коллектор размерами 200 х 100 сантиметров, расстояние между трубками в змеевике должно составить от 8 до 10 сантиметров.

Процесс сборки самодельного солнечного коллектора

Начало сборки этого изделия солнечной энергетики стартует с изготовления змеевика. Если вам удалось подобрать готовый змеевик, окончательная сборка займет намного меньше времени. Подобранный змеевик стоит очень тщательно вымыть под струей воды (желательно горячей), чтобы изнутри вымыть все засоры и избавиться от остатков фреона. Если у вас не нашлось подходящих трубок, то нужное количество вы сможете приобрести в магазине. Но в этом случае придется изготовить сам змеевик. Для его изготовления нарежьте трубки на требуемую длину. Далее, используя угловые переходы, проведите их спайку в форме конструкции змеевика. Дальше, чтобы коллектор можно было подключить к системе водоснабжения, на края змеевика напаивайте сантехнические переходы размерами ¾. Существует несколько вариантов формы и конструкции змеевика, например, можно паять трубки в форме «лесенки» (если вы собрались реализовать такой вариант, тогда покупайте не угловые переходы, вам понадобятся тройники).


Потом на заранее подготовленный лист металла вы наносите селективное покрытие черной матовой краской, сделать это желательно не меньше чем в пару слоев. Дождитесь, пока воздушный поток высушит краску, и начинайте пайку змеевика (с неокрашенной стороны). Вся конструкция змеевика должна быть припаяна по всей длине трубок, сделав это, вы гарантируете максимально эффективный теплообмен и как следствие – максимальную передачу тепла в систему водоснабжения. Если сделаете все правильно, собранный вами солнечный коллектор заработает так, как и было задумано.

Ответственная стадия сборки

Заключительным этапом вам надо собрать корпус, который скрепит все компоненты устройства в единую конструкцию. Используя лист фанеры и деревянные бруски, нужно сбить прочный ящик. В используемых деревянных брусках заранее прорежьте пазы, в них вы потом вставите экран из поликарбоната (глубина паза около 0,5 см). Выходные отверстия для трубок можно сделать уже после того, как установите все основные компоненты. Далее, в уже собранный деревянный ящик, чтобы создать воздушный карман, вы укладываете изоляцию из минваты. Поверх минваты крепите панель со змеевиком. Края ваты подворачиваете так, чтобы змеевик не дотрагивался до стенок ящика. Нагревательная панель и панель из поликарбоната также должны иметь между собой расстояние и не прикасаться друг к другу.

Завершающая стадия состоит в обработке корпуса специальным раствором с водоотталкивающей способностью и покрывается эмалью (за исключением лицевой части).


Вот и все, солнечный коллектор своими руками готов. Для того чтобы его активировать, поставьте его на опорную конструкцию, развернув лицевой частью к солнцу таким образом, чтобы лучи падали на лицевую часть под максимально прямым углом. На крыше устанавливаете бак для накопления воды, он будет служить резервуаром. К верхней части бака проведите шланг, соединенный с верхней трубкой коллектора, к нижней части от нижней трубки. Подключив воду по такой схеме, вы обеспечите работу в режиме естественной циркуляции. Согласно законам физики, горячая вода будет подыматься кверху в направлении бака, а вытесняемая холодная будет попадать в коллектор для нагрева в змеевике. Не забудьте, что к баку необходимо присоединить шланг и вентиль для забора воды из бака, а также его наполнения новой.

С проблемами обогрева жилых помещений и получения горячей воды приходится сталкиваться практически каждому владельцу частного дома. На сегодняшний день существует множество самых разнообразных систем, позволяющих с успехом решать упомянутые задачи. Отдельного внимания заслуживают альтернативные источники отопления, в частности коллектор, использующий в качестве топлива солнечную энергию. Такой агрегат предельно прост в сборке и выгоден в эксплуатации.

Солнечный коллектор своими руками

Основные сведения о самодельных солнечных коллекторах

Средний коэффициент полезного действия самодельных солнечных коллекторов достигает 50-60%, что является вполне хорошим показателем.

Профессиональные агрегаты имеют КПД порядка 80-85%, но нужно учитывать тот факт, что стоят они довольно дорого, а приобрести материалы для сборки самодельного коллектора может себе позволить практически каждый.

Мощности обыкновенного солнечного коллектора будет достаточно для подогрева воды и отопления жилых комнат.

В данном отношении все зависит от особенностей конструкции, которые определяются и просчитываются в индивидуальном порядке.

Сборка агрегата не требует наличия сложных в обращении и труднодоступных инструментов и дорогостоящих материалов.

Инструменты для самостоятельной сборки солнечного коллектора

  1. Перфоратор.
  2. Электродрель.
  3. Молоток.
  4. Ножовка.

Существует несколько разновидностей рассматриваемой конструкции. Они отличаются друг от друга эффективностью и итоговой стоимостью. При любых обстоятельствах самодельный агрегат будет стоить на порядок дешевле, чем заводская модель с аналогичными характеристиками.

Одним из наиболее оптимальных вариантов является вакуумный солнечный коллектор. Это наиболее бюджетный и простой в своем исполнении вариант.

Конструкция солнечного коллектора

Конструкция солнечного коллектора

Рассматриваемые агрегаты имеют довольно простую конструкцию. В целом система включает в свой состав пару коллекторов, аванкамеру и накопительную емкость. Работа солнечного коллектора осуществляется по простому принципу: в процессе прохождения солнечных лучей через стекло происходит их превращение в тепло. Система организована так, что выйти из замкнутого пространства эти лучи не в состоянии.

Установка функционирует по термосифонному принципу. В процессе нагревания теплая жидкость устремляется вверх, вытесняя оттуда холодную воду и направляя ее к источнику тепла. Это позволяет отказаться даже от применения насоса, т.к. жидкость будет циркулировать сама по себе. Установка накапливает энергию солнца и на протяжение продолжительного времени сохраняет ее внутри системы.

Компоненты для сборки рассматриваемой установки продаются в специализированн ых магазинах. По своей сути такой коллектор является трубчатым радиатором, установленным в специальную коробку из древесины, одна из граней которой выполнена из стекла.

Для изготовления упомянутого радиатора используются трубы. Оптимальным материалом изготовления труб является сталь. Подводка и отводка делаются из труб, традиционно применяемых при устройстве водопровода. Обычно используются трубы на ¾ дюйма, также хорошо подойдут изделия на 1 дюйм.

Решетка делается из труб меньшего размера с более тонкими стенами. Рекомендованный диаметр составляет 16 мм, оптимальная толщина стенок — 1,5 мм. Каждая решетка радиатора должка включать в свой состав 5 труб длиной по 160 см каждая.

Важные нюансы сборки коллектора своими руками

Первый этап – сборка короба. Для сборки упоминавшегося ранее короба используются деревянные доски шириной порядка 12 см и толщиной 3-3,5 см. Днище выполняется из оргалита либо фанерного листа. Дно обязательно усиливается при помощи реек размером 5х3 см. Длину реек подбирайте по размерам днища.

Второй этап – утепление короба. Короб нуждается в качественном утеплении. Лучший и наиболее удобный в использовании вариант – плиты пенопласта. Также хорошо подойдет минеральная вата. Утеплитель укладывается на дно короба.

Третий этап – обустройство короба для радиатора. Уложенный утеплитель необходимо укрыть слоем оцинкованного листового металла. Для соединения радиатора и уложенного листа металла используются хомуты. Предварительно окрасьте трубу радиатора и металлический настил черной матовой краской.

Снаружи коробка окрашивается в белый, а стекло герметизируется при помощи специально предназначенных для таких задач составов. Это позволит минимизировать потери тепла. Соединение труб выполняется в стандартном порядке при помощи тройников, муфт, а также уголков. Применяемые при сборке коллектора трубы без особых усилий соединяются вручную.

Четвертый этап – подготовка аккумулирующего бака. За накопление тепла в рассматриваемой системе отвечает бак, емкость которого может находиться в пределах 200-400 л. Конкретный объем подбирайте с учетом вашей личной потребности в воде. Бак можно сделать из бочки. Если найти подходящую бочку не удастся, используйте трубы.

Бак нуждается в утеплении. Лучше всего установить его в короб из фанерных листов или деревянных досок, а пространство между стенками коробки и емкости заполнить опилками, пенопластом или другим теплоизоляционны м материалом.

Пятый этап – подготовка аванкамеры. В состав рассматриваемой системы входит агрегат под названием аванкамера. Главной функцией этого приспособления является нагнетание постоянного избыточного давления, требуемого для полноценной работы системы на основе солнечного коллектора. Аванкамера изготавливается из подходящей емкости на 35-45 л. Прекрасно подойдет бидон. Дополнительно агрегат комплектуется подпитывающим устройством для автоматизации работы.

Поэтапное руководство по сборке агрегата

Схема циркуляции теплоносителя

Первый этап – установка накопителя и аванкамеры. Упомянутые агрегаты размещаются на чердаке дома. Убедитесь, что потолок в месте установки сможет выдержать вес емкостей с водой. Установите аванкамеру рядом с накопителем. Сделайте это так, чтобы уровень жидкости в аванкамере был выше уровня воды в накопительной емкости примерно на 100 см.

Второй этап – выбор места для установки солнечного обогревателя. Агрегат закрепляется на южной стене строения. Важно выдержать правильный уклон обогревателя к горизонту. Оптимальным считается значение в 45 градусов. Коллектор необходимо прикрепить к дому так, чтобы солнечные панели выглядели как продолжение кровли.

Третий этап – соединение отдельных элементов. Для выполнения этой задачи вам нужно купить дюймовые и полудюймовые стальные трубы. Полудюймовые вы будете использовать для соединения высоконапорных элементов системы – от места ввода воды до аванкамеры. Дюймовые трубы применяются в низконапорной части.

Важно, чтобы соединения были герметичными, воздушные пробки в данном случае недопустимы.

Предварительно трубы необходимо покрасить в белый или другой светлый цвет. Поверх краски закрепляется слой теплоизоляционно го материала. В данном случае оптимально подойдет поролон. Поверх утеплителя наматывается слой полиэтилена, а затем тканой ленты. В завершении трубы снова окрашиваются в белый цвет.

Четвертый этап – заполнение системы жидкостью. Воду нужно подавать через специальные дренажные вентили, установленные внизу радиаторов. Это позволит избежать образования воздушных заторов. Когда из дренажа начнет течь вода, операцию можно считать завершенной.

Пятый этап – подключение аванкамеры. Данный агрегат необходимо подключить к водопроводному вводу. После подсоединения следует открыть расходный вентиль. Вы увидите, что количество воды в аванкамере начнет уменьшаться.

Преимуществом подобного солнечного коллектора, собранного своими руками, является то, что он сможет подогревать воду даже при пасмурной погоде.

Ночью температура воздуха становится ниже температуры подогретой воды. В подобных условиях коллектор начнет обогревать окружающую среду и в целом работать в обратном режиме. Чтобы этого избежать, система комплектуется вентилем, позволяющим предупреждать возможность обратной циркуляции. Достаточно будет попросту перекрыть этот вентиль вечером, и энергия сохранится в системе.

При недостаточно высокой теплопроводности коллектора ее можно повысить путем добавления секций. Конструкция позволит вам сделать это безо всяких затруднений.

Можно конечно искусственно регулировать направление солнечных панелей по отношению к Солнцу, подкладывая под коллектор дополнительные конструкции

Таким образом, в самостоятельной сборке солнечного обогревателя нет ничего сложного. Больших денежных вложений такая работа тоже не требует, однако настоятельно рекомендуется покупать только высококачественн ые материалы от известных производителей. Подойдите к работе с максимальной ответственностью, не нарушайте приведенные рекомендации, и вы получите отличный источник тепла и горячей воды, работающий на бесплатной энергии. Удачной работы!

Солнечный коллектор своими руками - инструкция по монтажу!


Узнайте, как сделать солнечный коллектор своими руками. Пошаговая инструкция с описанием основных технологических этапов. Фото + видео.

Изготовление солнечных коллекторов своими руками

Солнечные коллекторы (водонагреватели) широко применяются для нагрева воды и отопления домов за счет энергии солнца, причем не только в летний период, а на протяжении всего года. В данном разделе вы узнаете, как сделать солнечный коллектор (водонагреватель) своими руками из подручных материалов и минимальными затратами.

Как сделать солнечный коллектор с высоким КПД из металлопластиковой трубы

КПД самодельного солнечного коллектора, можно значительно увеличить , внеся в конструкцию незначительные доработки, а именно установить на трубы абсорберы . Таким образом, даже используя в качестве теплообменника металлопластиковую трубу, можно построить солнечный коллектор, который в солнечную погоду способен вскипятить воду.

Какое выбрать стекло при изготовлении солнечного коллектора своими руками

Эффективность солнечного коллектора напрямую зависит от применяемого остекления.

Остекление должно обладать следующими свойствами:

– Обладать малым весом

– Стойкость к УФ излучению

– Противостоять повышенным температурам

Выбор утеплителя при изготовлении солнечного коллектора

Существует масса различных марок и видов утеплителей. Они отличаются по своим теплоизоляционным свойствам, физическим характеристикам, стоимости, удобности применения. Для вас будет представлен перечень утеплителей, которые наиболее распространены на рынке и какие из этого перечня можно применять.

Выбор труб для изготовления теплообменника солнечного коллектора

На сегодняшний день производители обеспечивают рынок большим ассортиментом труб из разных материалов. Все эти трубы по своим показателям имеют свои достоинства и недостатки. Здесь будут рассмотрены трубы которые наиболее оптимально подходят для изготовления коллекторов и разводки водоснабжения.

Изготовление солнечного водонагревателя своими руками

При изготовлении солнечного водонагревателя своими руками преследовалась цель, обеспечить теплой водой летний душ, в котором, при частом использовании вода просто напросто не успевала нагреваться даже при сильной солнечной активности.

Расчет площади солнечного коллектора

При строительстве системы горячего водоснабжения, используя солнечные коллекторы, многие задаются вопросом: "Какую площадь коллектора необходимо использовать? ". Чтобы не пугать вас сложными формулами и вычислениями, предложу схему, по которой вы сможете без проблем рассчитать примерную площадь коллектора для ваших нужд.

Как сделать солнечный концентратор из плоских зеркал

Преимущество солнечных концентраторов в том, что они могут преобразовывать воду в пар (в зависимости от скорости движения воды в теплообменнике). Зачем это надо? А необходимо это, например, для пропарки изделий из бетона, древесины, запуска парового двигателя и т.д.

Изготовление солнечного коллектора с медным теплообменником

Если ваша крыша покрыта черным рубероидом или битумной черепицей темного цвета, вы можете немного сэкономить на теплоизоляции задней стенки и изготовить солнечный коллектор (водонагреватель) своими руками . Разумеется, участок, где будет установлен солнечный коллектор, должен быть обращен по направлению к солнцу.

Солнечный концентратор для нагрева воды своими руками

Основное достоинство солнечного концентратора (рефлектора) в том, что они могут достигать более высоких КПД. Фокусируя высокую плотность солнечной энергии в одной точке, они способны превращать воду в пар в считанные секунды.

Как сделать солнечный коллектор для бассейна на 2кВт

После строительства бюджетного бассейна, пришла мысль построить солнечный коллектор, который способен будет нагреть 10 кубов воды, до комфортной для купания температуры. Для этого был построен коллектор площадью 4кв.м. и ориентировочной мощностью 2кВт.

Делаем солнечный коллектор из старой оконной рамы

Многие из нас уже давно сменили старые деревянные окна на металлопластиковые. И такая замена, в большей степени связанна не с экстерьером, а с сохранением тепла в наших квартирах. Старые оконные рамы вместе со стеклами, мы за ненадобностью просто выбрасывали на мусорник. Хотя с другой стороны, оконная рама (которая открывается книжкой) нам может еще сослужить хорошую службу в качестве солнечного коллектора (водонагревателя).

Базовые схемы подключения солнечных коллекторов

Эффективность работы солнечного коллектора зависит не только от материалов, из которых он изготовлен, но и от того, насколько правильно он установлен и смонтирован. Схема подключения во многом зависит от требований, предъявляемых к солнечному коллектору. Поскольку вариаций подключения великое множество, приведу лишь основные, базовые схемы.

Как сделать солнечный коллектор из пластиковых бутылок

В период летней жары, наибольшим спросом среди населения пользуется минеральная вода, напитки, соки и т.д. Однако, сами того не замечая, мы увеличиваем количество мусора на планете, выкидывая использованные пластиковые бутылки и тетра паки в мусорный бак. С другой стороны, данный "мусор" можно использовать с пользой для себя, т.е. сделать солнечный коллектор из пластиковых бутылок . Таким образом, мы получим бесплатную горячую воду, потратив на это минимум средств, и сделаем нашу планету чуточку чище.

Солнечный коллектор из старого холодильника своими руками

Для получения горячей воды при помощи энергии солнца, можно собрать своими руками простенький солнечный коллектор из материалов, которые вполне можно найти на своем хоз. дворе. При этом затраты на изготовление будут весьма мизерные. В качестве теплообменника (основы солнечного коллектора), будем использовать конденсатор от старого холодильника (решетка, которая крепится с тыльной стороны холодильника).

Солнечный водонагреватель из старого электрического бойлера

Многие, неисправные электрические бойлеры просто напросто выкидывают на свалку, хотя с другой стороны, бойлеру можно предоставить вторую жизнь, и своими руками изготовить из него солнечный водонагреватель , используя для нагрева воды бесплатную энергию солнца.

Как сделать плоский солнечный коллектор из полипропилена

Как сделать большой солнечный коллектор из PEX трубы

Частенько строительство одного большого коллектора по цене выходит дешевле, чем строительство маленьких, но большего количества. Речь пойдет о строительстве солнечного коллектора из пластиковой трубы , только более внушительных размеров.

Как сделать солнечный коллектор из шланги

Многие, замечали, что если оставить шлангу с водой на солнце, то после включения воды из шланга течет очень горячая вода (особенно если шланг темного цвета). Так почему бы нам не сделать солнечный коллектор , используя шлангу или полиэтиленовую трубу просто свернув в кольцо.

Изготовление солнечных коллекторов своими руками


Солнечные коллекторы (водонагреватели) широко применяются для нагрева воды и отопления домов за счет энергии солнца, причем не только в летний период, а на протяжении всего года. Вы узнаете, как сделать солнечный коллектор (водонагреватель) своими руками из подручных материалов и минимальными затратами.

Рассказываем как сделать солнечный коллектор для отопления своими руками

Всевозможные солнечные коллекторы разрабатываются с применением новейших технологий и современных материалов. Благодаря таким устройствам происходит преобразование солнечной энергии . Полученная энергия может нагревать воду, отапливать помещения, теплицы и оранжереи.

Аппараты можно укреплять на стенах, крышах частного дома, теплицы . Для больших помещений рекомендовано приобретать фабричные устройства. Сейчас гелиосистемы постоянно совершенствуются. Поэтому солнечные батареи сильно подают в цене, привлекая внимание потребителей. Стоимость фабричных устройств почти равноценна финансовым затратам, потраченным на их изготовление. Повышение цены происходит только из-за финансовой накрутки перекупщиков. Стоимость коллектора соизмерима с денежными затратами, которые потребуются на установку классической системы отопления.

На сегодняшний момент изготовление таких устройств набирает все большую популярность. Стоит заметить, что эффективность самодельного аппарата по своему качеству сильно уступает фабричным устройствам . Но обогреть небольшое помещение, частный дом или хозяйственные постройки агрегат, выполненный своими руками, может легко и быстро.

Принцип работы

Но принцип водонагрева идентичен – все устройства работают по одной разработанной схеме . В хорошую погоду лучи солнца начинают нагревать теплоноситель. Он проходит по тонким изящным трубочкам, попадая в бак с жидкостью. Теплоноситель и трубочки размещаются по всей внутренней поверхности бака. Благодаря такому принципу происходит нагревание жидкости, находящейся в аппарате. Позже нагретую воду разрешено применять на бытовые нужды. Таким образом, можно отапливать помещение, использовать нагретую жидкость для душевых кабин как горячее водоснабжение.

Температуру воды можно контролировать разработанными датчиками. Если произошло слишком сильное охлаждение жидкости, ниже заданного уровня, то автоматически включится специальный резервный подогрев. Солнечный коллектор можно подключить к электрическому или газовому котлу.

Представлена схема работы, подходящая для всех солнечных водонагревателей. Такое устройство отлично подойдет для отопления небольшого частного дома. На сегодняшний момент разработано несколько устройств: плоские, вакуумные и воздушные приспособления. Принцип действия таких устройств очень схож. Происходит нагрев теплоносителя от солнечных лучей с дальнейшей отдачей энергии. Но в работе наблюдается очень много различий.

Плоский коллектор

Нагревание теплоносителя в таком устройстве происходит благодаря пластинчатому абсорберу. Он представляет собой плоскую пластину теплоемкого металла. Верхняя поверхность пластины в темный оттенок специально разработанной краской. К нижней части устройства приварена змеевидная трубка.

Темная селективная краска, покрывающая верхнюю поверхность пластины, поглощает мощные солнечные лучи. Отражение солнца сводится к минимуму. Поглощенная энергия прогревает теплоноситель под абсорбером. Чтобы минимизировать потери тепла – можно применить теплоизоляцию корпуса при помощи закаленного стекла. Такой материал содержит минимальное количество окислов железа. Стекло крепят над абсорбером. Устройство служит верхней крышкой корпуса. Также закаленное стекло создает «парниковый эффект» в виде изолирующей теплицы. Это значительно увеличивает нагрев абсорбера, повышая температуру теплоносителя. Такое устройство отлично подойдет для отопления частного дома. Также агрегат устанавливается в теплицы, душевые кабины, садовые оранжереи и парники .

Вакуумный коллектор

По сравнению с плоским устройством, вакуумный коллектор имеет другую конструкцию. Основными рабочими элементами принято считать вакуумированные трубки, а также теплоноситель. Благодаря высокоселективному покрытию стеклянная поверхность устройства поглощает большое количество солнца. Солнечная энергия начинает быстро нагревать внутренний теплоноситель. Ликвидация теплопотерь происходит при помощи вакуумной прослойки. Аккумулированное тепло проходит через теплосборник, двигаясь к самой системе устройства.

Если рассматривать работу в целом, то вакуумный коллектор обладает наибольшей производительностью, по сравнению с плоским устройством. Агрегат можно устанавливать на крышу частного дома, в оранжереи, теплицы, парники, летние душевые кабины.

Воздушный коллектор

Воздушный коллектор является одной из самых успешных разработок . Но солнечные батареи воздушного типа встречаются очень редко. Такие устройства не пригодны для отопления дома или горячего водоснабжения. Их применяют для кондиционирования воздуха. Теплоносителем является кислород, который нагревается под воздействием солнечной энергии. Солнечные батареи данного типа идентифицируются с ребристой стальной панелью, выкрашенной в темный оттенок. Принцип действия данного устройства представляет собой натуральную или автоматическую подачу кислорода в частные дома. Кислород при помощи солнечных излучений прогревается под панелью, создавая при этом кондиционирование воздуха.

Плюсы гелиосистем

  • Сокращение расхода электроэнергии минимум в 2-3 раза;
  • Из-за сильного истощения природных ресурсов агрегаты, выполненные своими руками, могут стать незаменимыми источниками отопления;
  • В воздушный аппарат, для придания специфических определенных ароматических свойств, разрешено добавлять дополнительные вещества. В воду плоского и вакуумного коллектора доливают антифризы. Они помогают не замерзать жидкости при низкой атмосферной температуре;

Минусы гелиосистем

  • Недавнее введение устройств в эксплуатацию;
  • Невозможность установки агрегатов в некоторых регионах из-за часового пояса, длины светового дня, расположения местности, погодных условий;
  • В большинстве случаев устройство, выполненное своими руками, рекомендовано применять только как дополнительный источник энергии. Использовать солнечные батареи для полной генерации тепла нецелесообразно;

Схема подключения солнечной установки:

Что понадобится?

Для того чтобы изготовить воздушный, плоский или вакуумный агрегат своими руками, понадобятся :

  • Температурные датчики, находящиеся в устройстве и накопителе;
  • Переходники для подключения системы к холодному водоснабжению;
  • Водосток для горячего водоснабжения;
  • Специальные температурные датчики для подогрева жидкости;
  • Расширительный бак;
  • Циркуляционный насос;
  • Солнечный регулятор;

Чертеж конструкции:

Инструкция по сборке

В первую очередь необходимо определить габариты будущего устройства . Поэтому рекомендовано тщательно провести точный расчет площади, на которой будет находиться устройство. Важным фактором при расчете является определение интенсивности солнечного излучения. В наиболее холодных регионах энергия солнца ослаблена, в южных регионах страны – повышена. Также на расчеты влияет местоположение дома, теплицы или других источников, в которых будет располагаться агрегат. Еще одним немаловажным фактом считается материал нагревательного контура. Чем ниже показатель материала – тем меньше температура воздушного или водяного потока.

Процесс сборки

Главные этапы работы:

  • Производство короба;
  • Производство специального теплообменника, а также радиатора;
  • Производство накопителя и аванкамеры;
  • Агрегатирование;

Введение в эксплуатацию;

Производство короба

Для коробки понадобится обрезная доска 30х120 мм ±5 мм. Днище короба делают текстолитовым, оснащая его специальными ребрами. Благодаря пенопласту создается хорошая теплоизоляция. Дно покрывают оцинкованным листом.

Производство теплообменника

  • Понадобятся металлические трубки. Длина труб должна быть не менее 1,6 м. Количество: 15 штук. Также в работе необходимо использовать две дюймовые трубы длиной 0,7 м.
  • В утолщенных трубках следует просверлить небольшие отверстия с идентичным диаметром меньших труб. Отверстия понадобятся для установки труб. Высверленные отверстия должны быть соосными, расположенными на одной оси. Их максимальный шаг должен составлять не более 4,5 см.
  • Все необходимые для работы трубки необходимо собрать в целую конструкцию. Для надежности их сваривают при помощи сварочного аппарата.
  • На оцинковку, прикрывающую дно короба, монтируют теплообменник. Для надежности его можно зафиксировать металлическими зажимами или стальными хомутами.
  • Для лучшего поглощения лучей дно конструкции выкрашивают в темный оттенок. Внешние составляющие конструкции выкрашивают в светлый оттенок. Отлично подойдет белый оттенок. Он помогает снизить потерю тепла.
  • Около перегородок устанавливается покровное стекло. Стыки тщательно герметизируют.
  • Среднее расстояние между элементами конструкции равно 11 мм.

Производство накопителя

Разрешено использовать как цельнокроеную бочку, так и различные сваренные конструкции. Накопительный бак следует изолировать от тепловых потерь. Аванкамера должна быть оснащена шарнирным краном – механизмом, подающим жидкость. Объем аванкамеры должен быть равен 36-40 л.

Агрегатирование

  • В первую очередь устанавливаются накопитель и аванкамера. Высота воды в аванкамере должен быть на 0,8 м выше, чем в накопителе. Необходимо продумать устройство перекрытия жидкости.
  • Коллектор, предназначенный для отопления, закрепляется на каркасе строения. Устройство, предназначенное для нагрева воды, можно разместить на крыше теплицы, оранжереи или дома. Для размещения устройства выбирают южную сторону. Установка должна иметь наклон к горизонту, равный 35-40°.
  • Расстояние между теплообменником и накопителем должно быть не более 50-70 см. В ином случае потери солнечной энергии будут сильно ощутимы.
  • Коллектор должен располагаться ниже накопителя, а накопитель ниже аванкамеры.

Введение в эксплуатацию

Для окончательной сборки понадобится специальная запорная арматура в виде различных переходников, сгонов или фитингов. Высоконапорные участки солнечной батареи соединяют специальными трубами диаметром 0,5 дюймов. Для низконапорных участков рекомендовано применять трубы диаметром 1 дюйм.

  • При помощи нижнего дренажного отверстия конструкция заполняется водой;
  • К устройству присоединяется аванкамера;
  • Производится урегулирование уровней жидкости;
  • Рекомендовано произвести проверку батареи на утечку воды;

После сборки и проверки конструкции можно приступать к эксплуатации;

Изготовление или покупка готового решения?

Самодельные устройства, предназначенные для отопления и нагрева воды, обладают низким КПД. Поэтому такие конструкции рекомендовано использовать для обогрева теплицы, цветочной оранжереи, небольшого частного помещения. Воздушный, плоский или вакуумный аппарат может значительно повысить уровень комфорта на даче или в загородном доме. Аппараты снижают затраты на электроэнергию, потребляемую обычными источниками питания. Благодаря введению новых технологий, применение гелиосистем набирает все большие обороты. Но для холодных регионов страны следует приобретать фабричные конструкции.

Солнечный коллектор для отопления своими руками


Говорим о возможности сделать солнечный коллектор для отопления своими руками. Благодаря таким устройствам происходит преобразование солнечной энергии.

Коллектор солнечный своими руками: виды, принцип работы и фото

Использование солнечной энергии давно уже не новшество. Использовать ее можно для местного нагрева воды, например, на даче. Применить такой нагрев можно и для отопления, но стоимость дополнительного оборудования выйдет довольно высокой. Соорудить солнечный коллектор своими руками – не фантастика!

Для использования энергии солнца применяют специальные коллекторы. Для применения в разных целях существуют несколько вариантов устройств. Существуют такие типы элементов:

Плоский коллектор

Им можно назвать солнечную панель. Плоский солнечный коллектор своими руками создать выгодно и несложно. В центре данного устройства расположена панель поглотителя. Выполнена такая панель из металлов, которые хорошо проводят тепло, чаще всего это медь или алюминий.Чтобы коллектор хорошо выполнял свою функцию, а именно максимально поглощал солнечную энергию и с минимальными потерями преобразовывал ее в тепловую, на его поверхность должен быть нанесен специальный состав. Его поверхность защищает стекло с минимальным содержанием в своем составе железа. Такое стекло обладает хорошей пропускной способностью, минимальным отражением света и является хорошей защитой от воздействий внешней среды. По периметру поглотитель имеет корпус для защиты от механических воздействий, выполнен он обычно из стали или алюминия. Корпус и нижняя часть коллектора имеют теплоизоляцию. Плоский элемент способен передавать тепло тому теплоносителю, который в нем расположен. Это может быть простая вода или антифриз.

Расположить плоский коллектор можно в любом положении. Обычно его закрепляют на крыше, но и в другом месте он будет работать не хуже. Соорудить такой солнечный коллектор своими руками можно без больших вложений.

Если говорить о заводских элементах, то плоские могут быть стандартных размеров, площадью до 2,5 м 2 .
Если требуется большая мощность, можно устанавливать несколько стандартных панелей вместе. Они будут составлять единую систему солнечного тепла.

У плоских коллекторов есть преимущество – они дешевле аналогов вакуумных. Но при низких температурах окружающей среды такие коллекторы теряют много энергии и уровень КПД снижается. Поэтому для применения в летний период достаточно будет плоского коллектора, а вот зимой он уступит вакуумному коллектору почти в два раза.

Такой коллектор состоит из трубок, внутри них вакуум. Устройство каждой трубки напоминает устройство термоса, в основе которого стержень из меди, оболочка такого термоса – колба из дойного стекла, как раз между ними вакуум. Внутренняя оболочка трубки покрыта специальной черной краской, а внешнее стекло прозрачное. Трубки объединяются при помощи соединительного модуля.

Ценовая категория такого типа коллекторов выше аналогов плоских моделей, но преимущество определяется их выгодой использования в зимний период. Своими руками для дома солнечные коллекторы сделать можно из подручных материалов. Они могут быть от других устройств, например, от холодильника. В ремонте устройств вакуумного типа сложностей возникнуть не должно. Если одна из трубок выйдет из строя, сам коллектор продолжит работу. Но выход тепла будет меньше.

Вакуумные элементы можно подразделить на:

Вакуумный солнечный коллектор своими руками смонтировать сложнее, чем плоский. Выйдет это немного дороже, но надо оценить преимущества вакуумного перед его установкой.

Солнечный коллектор своими руками соорудить не так сложно. Но стоит помнить, что он не будет также эффективен, как аналогичный произведенный в промышленных условиях. Необходимо сделать соответствующий расчет выгоды и эффективности данного устройства.

Как изготовить солнечный коллектор своими руками?

Для того чтобы приступить к устройству такого солнечного накопителя тепла, нужно самостоятельно совершить следующие действия:

  • подготовить основу будущего коллектора;
  • подготовить для установки радиатор;
  • подготовить накопитель тепла;
  • произвести монтаж непосредственно коллектора.

Основой устройства может служить обрезная доска с размерами от 25-100 мм до 35-135 мм. Из них следует сделать коробку походящего размера, ее дно изолировать и положить утеплитель (подойдет обычная стекловата), сверху укрыть оцинкованным листом.

Теплообменник изготавливается следующим образом:

  1. Следует приобрести металлические трубки: тонкостенные и толстостенные.
  2. В толстостенных трубках надо сделать отверстия по диаметру тонких труб с шагом не более 45 мм. Сверлятся они по одной стороне. Конечно, солнечный коллектор, своими руками сделанный, потребует времени на подготовку не только необходимого материала, но и инструмента.
  3. На этом этапе следует надежно укрепить трубки в отверстиях и закрепить их сваркой.
  4. Сооруженная конструкция закрепляется на оцинкованном листе, находящемся на коробе.
  5. Следующим этапом будет покраска коробки коллектора в черный цвет. Желательно только дно покрасить темным, а остальные части оставить светлыми, так как именно днище будет поглощать солнечные лучи.
  6. Затем устанавливается стекло покрова, соблюдая расстояние между ним и трубками не менее 1 см.
  7. Накопителем для коллектора может служить любая герметичная емкость. Объем ее может достигать 400 литров (минимум 150 литров).
  8. Следующий этап – изготовление аванкамеры. Это может быть емкость до 40 литров, на ней устанавливают кран, именно это устройство будет подавать воду.
  9. Чтобы избежать потерь тепла, надо основательно изолировать бак и сам коллектор.

Сборка устройства

Теперь нужно окончательно собрать его в единое целое. Сборка производится в несколько этапов:

  1. Установка накопителя и аванкамеры. Важное условие – жидкость в накопителе обязательно должна быть ниже уровня в аванкамере на 80 мм.
  2. Размещение коллектора в подготовленном месте. Можно это сделать на крыше. Надо соблюсти угол наклона в 35-40 градусов, установив элемент при этом с южной стороны.
  3. Чтобы минимизировать потери тепла, следует соблюсти расстояние не меньше 50 см между теплообменником и накопителем.
  4. Накопитель должен располагаться выше коллектора и ниже аванкамеры.

Остается самый ответственный этап – подключение к системе.

Для этого нужно заполнить систему водой, отрегулировать ее количество, убедиться в отсутствии протечек. Если соблюдены все условия, таким коллектором можно пользоваться ежедневно.

Такой сделанный солнечный коллектор для отопления своими руками сбережет немало средств. Водонагревательные системы, в основе которых лежит солнечный коллектор, можно разделить по типу циркуляции воды.

Естественная циркуляция воды

При такой системе циркуляции бак-накопитель располагается выше коллектора. По естественным законам, вода нагревается и поступает вверх в бак. При этом происходит вытеснение холодной воды, она уход вниз и поступает в коллектор. Там она нагревается и снова поднимается. Бак такой конструкции можно оснастить только двумя шлангами: для подачи холодной воды и отведения горячей. Подойдет такая система для небольших дачных нужд – летней кухни или душа.

Принудительная

Такая система не зависит от того, где располагается коллектор или накопительный бак. Вода циркулирует в такой системе благодаря дополнительно поставленному насосу. Из-за того, что требуется установка электронасоса, стоимость коллектора возрастает. При этом повышается производительность.

Наряду с плоскими и вакуумными устройствами существует возможность создать воздушный солнечный коллектор своими руками. Устройство его намного проще, чем водяного, но и главный недостаток существенен – он не может передать все накопленное тепло. Воздух – проводник тепла намного хуже, чем вода.

Однозначно сказать, какой коллектор лучше выбрать – нельзя. Все будет зависеть от того, где он будет применен и какой уровень КПД нужен в конкретном случае. Но поможет сделать выбор сравнение положительных качеств и недостатков каждого из видов по следующим параметрам:


Выгода от солнечного элемента

Преимущества установки коллектора есть, но в каждом индивидуальном случае их будет больше или меньше. Основные общие плюсы:

  • Экономия ресурсов, выработанных искусственным путем.
  • Отказ от искусственных ресурсов полностью. Это можно осуществить, если речь идет о небольшом потреблении.
  • Экономия на покупке готового оборудования, при возможности монтажа коллектора собственноручно из доступных материалов.
  • Независимость от общих сетей отопления. Если нет возможности подключения к центральной магистрали, солнечные коллекторы – удачная замена.

Если дом большой и проживает в нем достаточное количество человек, полный отказ от искусственных ресурсов невозможен, но их сокращение и экономия на этом – вполне реально выполнимая задача.

Коллектор солнечный своими руками: виды, принцип работы и фото


Использование солнечной энергии давно уже не новшество. Использовать ее можно для местного нагрева воды, например, на даче. Применить такой нагрев можно и для отопления, но стоимость дополнительного оборудования выйдет довольно дорого. Соорудить коллектор солнечный своими руками давно уже не фантастика.

СОЛНЕЧНЫЙ КОЛЛЕКТОР ИЗ ПОЛИКАРБОНАТА

Я уже давно задумал сделать на даче солнечный коллектор для нагрева воды в летнем душе. Идея эта появилась еще два года назад, с началом строительства бани, но только в прошлом году я приступил к ее практическому воплощению. Спросите: «Что я делал до этого»? А я искал какой же мне вариант реализации выбрать. Сейчас уже даже смешно вспоминать, какой у меня был первоначальный план.

Самый распространенный и наверное самый надежный вариант самодельных солнечных водонагревателей - это коллектор спаянный из медных трубок (схема чуть выше). Я тоже изначально думал делать именно такой. Но проблема в том, что он получается слишком уж дорогим и довольно тяжелым. У меня же стояла задача сделать максимально дешевую и легкую конструкцию.

Именно поэтому я остановился на варианте использования в качестве рабочей поверхности листового сотового поликарбоната. Развитие идеи использования пластиковых панелей с внутренней канальной структурой начиналось еще с мысли об использовании ПВХ-сайдинга, но потом на глаза попался поликарбонат - его не надо «набирать» из нескольких досочек. Моя уверенность в правильности выбранного материала для солнечного коллектора стала укрепляться, когда комментариях к описанию моих тестовых конструкций читатели начали предлагать использовать именно сотовый поликарбонат или полипропилен. А недавно я еще и в интернете наше описание нескольких похожих действующих солнечных нагревателей.

Итак, курс на изготовление пластикового солнечного коллектора выбран. Приступаем к реализации.

Первым делом я для себя решил, что мой коллектор будет собран без использования стекла. В качестве ветрозащиты я собираюсь использовать тот же материал, что и для рабочей поверхности, т.е. сотовый поликарбонат.

Это прозрачный материал, светопроницаемость достаточно хорошая, поэтому я не думаю, что он будет очень сильно снижать КПД конструкции по сравнению со стеклом. А вот плюсов у такой замены фронтальному стеклу я вижу массу. Благодаря тому, что поликарбонат фактически двухслойный, это будет равносильно двойному остеклению. Это поможет создать отличный парниковый эффект.

Второй плюс поликарбоната - прочность. Он с легкостью переносит крупный град. Даже если во время града фронтальное покрытие и пострадает, это разрушение ни как не скажется на работе системы в целом. И уж конечно, последствия не будут столь катастрофическими, как при разбитом стекле.

С фронтальным покрытием определились. Следующим важным элементом солнечного коллектора является задняя теплоизоляция. Я решил использовать для этого обычный листовой пенопласт. Причины такого выбора: легкость и дешевизна. Некоторые производители используют в качестве заднего утеплителя тот же сотовый поликарбонат или полипропилен. Решение конечно изящное, коллектор получается тоненький. Но лично мне кажется, что это будет чуть дороже. К тому же, у меня на даче уже был лист пенопласта подходящего размера - остался со времен утепления дома.

Следующий шаг - надо определиться с толщиной материала, который будет использоваться в качестве коллектора. В продаже есть листы от 4 до 25 мм. Некоторые советуют «брать больше», мотивируя это тем, что получится больше площадь сечения внутренних каналов, по которым будет циркулировать жидкость, что уменьшает сопротивление потоку. Но простой расчет для листа толщиной 4 мм дает нам суммарную площадь сечения каналов в районе 35 кв.см на погонный метр - это равносильно сечению трубы диаметром 6-7 см. Не знаю как вам, но мне этого сечения более чем достаточно. К тому же надо помнить вот еще что: чем больше будет толщина рабочего листа, тем больше будет объем внутренних каналов, т.е. тем больше туда поместится теплоносителя, а он будет иметь больший вес и этим весом будет деформировать нашу систему. В коллектор из листа поликарбоната толщиной 4 мм поместится около 3-4 литров на 1 кв.м, а если взять лист 10 мм, то теплоносителя в нем будет уже около 10 литров на 1 кв.м. А еще большой объем теплоносителя будет дольше прогреваться солнцем.

Короче, я решил использовать сотовый поликарбонат толщиной 4 мм. Было куплено два листа размером 210х100 см. Один - для рабочей поверхности, второй - для фронтальной защиты.

Кстати, еще на этапе обдумывания проекта я решил делать солнечный коллектор площадью около 2 кв.м. Для такой площади мне понадобилось два отрезка метровой длинны из сплошного 12-ти метрового листа, в которых продают сотовый поликарбонат. Ширина стандартного листа 210 см. - мне это как-раз подходит.

Было еще несколько вариантов. Например, можно было бы сделать два солнечных коллектора размером 1х1 метр, их будет проще перевозить. Я не стал этим заниматься из-за увеличения объема работ по сборке двух коллекторов вместо одного. К тому же у меня сборочная площадка и место будущей эксплуатации - одна и та же дача, не придется думать как перевезти здоровенную конструкцию.

Еще можно было бы сделать вертикально ориентированный коллектор размером 1х2 метра, но в этом случае мы бы уменьшили суммарное сечение внутренних каналов коллектора (в 2 раза), а также увеличили бы их длину (тоже в 2 раза), что примерно в 4 раза увеличило бы сопротивление потоку теплоносителя и снизило бы КПД системы, в сравнении с горизонтально ориентированным коллектором 2х1 м.

Для сборки и подключения коллектора я также купил:

Канализационные трубы ПВХ. Диаметр - 32 мм. Длина - 2 м.

Заглушки для этих труб

Полипропиленовые водопроводные уголки-фиттинги с металлической резьбой

Гибкие шланги с резьбовым соединением

Канализационные трубы были выбраны вместо водопроводных т.к. у них больше диаметр и тоньше стенки - проще будет резать трубу вдоль. Учитывая, что коллектор будет работать не под давлением, прочности такой трубы вполне хватит.

Штатные заглушки для канализационных труб будут использованы по прямому назначению - они закроют трубы с одной из сторон.

Полипропиленовые уголки с резьбой подбирались прямо в магазине так, чтобы их наружный диаметр максимально подходил ко внутреннему диаметру труб. Их надо будет просто посадить на герметик.

Можно было бы использовать уголок для канализационных труб, но тогда все равно пришлось бы думать как к нему надежно подсоединить шланг подключения коллектора. А с этими водопроводными уголками я «убиваю двух тараканов одним тапком» - и вывод сделаю и разборное соединение для подключения. Вы спросите: «Почему уголки? Почему не прямой вывод?» Ну так шланги-то от пассивного солнечного коллектора будут вверх идти к теплоаккумулятору, который должен располагаться выше коллектора. Уголки, чтобы потом шланги не изгибать.

Все остальные материалы будут докупаться по мере необходимости.

Начинаем сборку коллектора. Надо сделать продольный разрез в подающей и отводящей трубе. В этот разрез будет вставлен лист сотового поликарбоната. Вода будет поступать из нижней трубы в каналы этого листа, там она будет нагреваться солнцем и под действием термосифонного эффекта подниматься вверх. Нагретая вода отводится через верхнюю трубу.

Должно получиться примерно так:

Чтобы сделать продольный разрез в трубе я использовал обычную дрель с насадкой в виде дисковой пилы. Может также использоваться углошлифовальная машинка (болгарка), но у меня ее просто не было под рукой.

Сначала я пробовал сделать пропил, удерживая трубу руками, но это оказалось практически невозможно сделать. Труба скользит в руках и постоянно дергается из-за усилий, создаваемых пилой. Я помучился минут 5, пропилив за это время всего сантиметров 10-15. Пропил получился неровный, а учитывая, что мне суммарно надо пропилить 4 метра (две трубы по 2 метра), пришлось что-то придумывать.

Зажимать тонкостенные трубы из ПВХ в тиски - это плохая идея. Поэтому был придуман и на скорую руку собран простейший зажим из двух реек и обрывков веревки.

На этой фотке также видно низкое качество пропила, полученное при удержании трубы вручную.

С этой приспособой работа пошла гораздо быстрее. Две трубы удалось пропилить минут за 5.

Качество пропила тоже получилось вполне удовлетворительным. Видно, что он гораздо ровнее, по сравнению с пропилом, который делался когда трубу держали руками.

Длина пропила должна точно соответствовать ширине рабочей части будущего солнечного коллектора. В моем случае это чуть меньше 2 метров. Начало и конец трубы должны оставаться нетронутыми, чтобы в будущем их можно было использовать для подключения или заглушить.

Что надо делать дальше, думаю, всем понятно. Надо вставить лист сотового поликарбоната в этот пропил. Но тут есть одна сложность. Из-за внутреннего напряжения в пластике пропил в трубе просто «схлопнулся» почти по всей длине. Это видно на фотке. Вставить лист в такую щель оказалось сложно. Можно было бы ее расширить, чтобы даже после этого схлопывания у нас осталась ширина 4 мм, но я решил этого не делать. Расширяя пропил мы уменьшим диаметр трубы в средней части. А если оставить все как есть, то силы внутреннего напряжения в пластике будут компенсировать небольшое давление внутри коллектора. Также благодаря этому труба будет крепче держаться за лист.

Чтобы загнать лист поликарбоната в пропил в трубе я просто разрезал конец трубы канцелярским ножом:

А потом через этот разрез просто «натянул» трубу на лист.

Далее нужно выполнить небольшую подгонку. Основная задача в том, чтобы труба оставалась прямой, а сотовый поликарбонат не заходил в трубу слишком глубоко. Вот что у меня получилось (это не свет в конце тоннеля, это свет в конце трубы)

Еще на фотках видно, что листы сотового поликарбоната с обеих сторон затянуты защитной пленкой. Я решил ее не снимать, чтобы предохранить их от повреждения и загрязнения. Сниму перед самой покраской.

Теперь приступаем к одному из самых ответственных этапов сборки солнечного коллектора. Надо герметизировать стык рабочей поверхности с трубами. Умельцы с западных сайтов используют для этого разные силиконовые герметики, но у меня, если честно, есть большие сомнения в прочности такого соединения. Мой коллектор хоть и не будет испытывать на себе давление магистрального водопровода, но все-таки мне хотелось бы быть уверенным в том, что он не протечет. Тем более, что я уже экспериментировал с разными герметиками.

В итоге, для склеивания и герметизации солнечного коллектора я выбрал термоклей. Купил клеевой термопистолет, палочки клея для пластика и вперед.

Процесс герметизации оказался на удивление прост. Правда вот расход клеевых стержней мог бы быть и поменьше. Просто я не жалел клея. Проходил по стыкам в два захода. Сначала старался загнать расплавленный термоклей в стык, чтобы он заполнил собой все щели, а вторым заходом формировал ровный наружный шов, который будет держать нагрузку. На торцах клей тоже не экономил.

Поначалу у меня были сомнения - будет ли термоклей хорошо держать соединение ПВХ с поликарбонатом. Поэтому, чтобы проверить, я сначала приклеил небольшой кусочек поликарбоната к ПВХ-трубе. Скажу вам честно - потом еле отодрал. Теперь главное мое сомнение - не будет ли термоклей размягчаться при нагревании коллектора

Следующим этапом у меня будет покраска. Для лучшего поглощения солнечной энергии я решил покрасить коллектор обычной матовой краской из баллончика.

К сожалению, этот метод не идеален. Краска ложиться неровно, остаются плохо прокрашенные участки. К тому же, одного баллончика (правда неполного) мне на 2 кв.м поверхности не хватило. В последствии пришлось докупать еще один баллончик краски. Она оказалась на базе другого растворителя, поэтому при нанесении второго слоя для плотного закрашивания, она начала коробить старую краску. Короче, результат получился не очень хороший.

Поэтому, если вы хотите избежать лишних проблем с закрашиванием солнечного коллектора, лучше в качестве материала рабочей поверхности использовать не прозрачный поликарбонат, как у меня, а черный непрозрачный сотовый полипропилен. Его не придется красить, что значительно сократит расходы.

После полного окрашивания поглощающая панель коллектора приобрела такой вот вид:

Пятна на поверхности - это следы вспучившейся краски. Вспучивание произошло из-за того, что я заливал панель краской из разных баллончиков. Одна краска была на алкидной основе, а вторая - которая с алкидной краской «не дружит». Но для процесса нагревания это вспучивание значения не имеет, поэтому я не стал его исправлять.

После окрашивания, к концам труб были тем же термоклеем приделаны уголки с резьбой.

Уголки с резьбой позволяют легко подключать и отключать коллектор при помощи гибких армированных шлангов.

После этого я решил провести серию испытаний, чтобы проверить, как коллектор будет держать давление и температуру. Пока результаты меня не очень радуют, но обо всем по порядку.

Для испытаний я просто ставил коллектор вертикально и подавал в него воду из водопровода через нижнюю трубу. Прозрачный полипропилен с обратной стороны позволяет контролировать процесс заполнения. Как только коллектор полностью заполнялся и вода начинала выливаться через верхнюю трубу, подача воды в коллектор прекращалась. Минус такого способа в том, что он создает более высокое давление воды внизу коллектора и практически нет давления вверху.

Первое заполнение коллектора водой показало, что в клеевом стыке труб и поликарбоната есть несколько протечек. Причем протечки обнаружились вверху, где давление было низкое. Отключаем панель, сливаем воду, сушим, устраняем точки протечки.

Второе подключение - ни где ничего не течет. Чтобы создать давление в районе верхней трубы я просто поднимал повыше конец отводящего гибкого шланга. Опять обнаружилась протечка. Отключаем панель, сливаем воду, сушим, устраняем точки протечки.

Третье подключение. Тут я набрался смелости и решил создать в панели повышенное давление, чтобы проверить, а вдруг он выдержит давление воды в водопроводе. Для создания давления я просто пальцем закрыл отводящую трубку. Воздух, оставшийся в коллекторе, должен был послужить амортизатором для плавного повышения давления. По мере нарастания давления, держать палец становилось все труднее, а потом клеевой шов у нижней трубы лопнул.

Выводы: слегка повышенное давление коллектор держит, но наглеть не стоит. Отключаем панель, сливаем воду, сушим, устраняем точки… нет уже не точки, а целые участки протечки.

Чтобы укрепить шов, я решил сделать его гораздо ТОЛЩЕ. Клеевым пистолетом в районе шва укладывалось большое количество термоклея, а потом все это оплавлялось и выравнивалось старым советским молотковым паяльником.

Для этой работы можно было бы использовать строительный фен, но у меня его просто не было.

После долгих мучений шов получился такой.

Некрасиво конечно, но главное чтобы держалось. Очередное испытание выявило лишь одну маленькую протечку, которая была быстро устранена. Настроение к этому моменту у меня уже было не самое радужное - оптимизм по поводу прочности швов несколько угас. Поэтому проверять панель на повышенное давление я не стал, чтобы не расстраиваться еще больше.

Не прибавило мне оптимизма также и испытание пустой панели на ярком солнце. Меньше чем за минуту коллектор нагрелся до такого состояния, что стало больно к нему прикасаться. Клей на швах на солнечной стороне также очень быстро размягчился. Понятное дело, что ни о какой прочности шва в такой ситуации речи быть не может. Если в рабочем режиме вода в коллекторе будет нагреваться до такой же высокой температуры или будет нарушена циркуляция, скорей всего швы не выдержат. Тут, видимо, надо брать какой-то более тугоплавкий термоклей.

Ну да ладно. Я на все эти неудачи махнул рукой - все таки это эксперимент. Решил довести сборку солнечного коллектора до конца. А если не получится, разберу и буду делать коллектор по другой схеме.

Под панель коллектора положил лист обычного пенопласта толщиной 5 см. А сверху все это накрыл еще одним листом прозрачного поликарбоната. Поликарбонат был немного шире, поэтому края я просто загнул и впоследствии прикрутил к пенопласту шурупами

Для изготовления рамы я использовал металлический профиль для гипсокартона. Профиль выбирал исходя из предполагаемых размеров «сандвича» солнечного коллектора. У меня профиль то ли 70х30, то ли 70х40, но как оказалось, можно было брать чуть больше, например 70х70.

В профиле самым бесцеремонным образом были вырезаны отверстия для вывода наружу точек подключения солнечного коллектора.

Немного неаккуратно, но те ножницы по металлу, которые оказались у меня под рукой, иначе сделать просто не позволяли

Сборка рамки производилась на шурупы, которые предназначены для скрепления таких металлических профилей. В результате получилось такое вот изделие.

Как видно на фото, мне пришлось дополнительно «стянуть» горизонтальные участки рамки между собой. Без этой стяжки они не хотели держать форму. Все таки для рамы был выбран слишком тонкий металлический профиль большой длины.

А вот как коллектор выглядит с обратной стороны.

На двух последних фотографиях коллектор показан на «испытательном стенде» Он был полностью заполнен водой и простоял так около часа. Протечек ни где не обнаружилось. Это обнадеживает.

Посмотрим как он покажет себя после подключения в реальных рабочих условиях.

Солнечный коллектор из поликарбоната своими руками как собрать и изготовить


Солнечный коллектор из поликарбоната своими руками как собрать и изготовить Солнечный коллектор своими руками из 14-ти метров металлопластиковой трубы стоимостью 31 руб/метр

Строим солнечный коллектор для теплицы самостоятельно

Когда солнце прячется, обычная теплица остывает. Температура снижается в конструкции резко. Солнечные теплицы конструируют таким способом, чтобы в ней обеспечивалась стабильная температура длительное время. Это достигается из-за использования специального оборудования и теплоизоляционных материалов, которые обеспечивают обогрев теплицы путем использования солнечной энергии.

Применение солнечных коллекторов помогает обогреть теплицу даже при плохих погодных условиях, когда температура окружающей среды составляет до -25°С.

Преимущества солнечных коллекторов

В виде специального варианта используется отопление теплицы солнечным коллектором. Для получения эффекта от работы коллекторов, их производят из специальных теплоизоляционных материалов. Создается надежная герметизация всех элементов системы, чтобы получить полный вакуум.

Если применять подобные обогревательные элементы, то можно произвести обогрев теплицы даже при плохих погодных условиях, когда параметры температуры окружающей среды составляют до -25°С. В подобном диапазоне температур можно проводить выращивание сельскохозяйственных культур в течение круглого года и получать высокие урожаи. Но температура снижается существенно, а также выступает за территорию рабочего диапазона.

Для решения данного вопроса применяют обогревательный тэн или тепловой насос. В итоге получается целый скомбинированный вид отопительный системы в теплице, которая почти не имеет конкурентов в этой области применения.

Направление солнечных коллекторов относится сейчас к перспективному направлению, а их стоимость постоянно снижается. Отличием солнечной энергии, которую потребляет коллектор, является экологическая чистота и бесплатность. Система способна обеспечить обогрев теплицы из поликарбоната и любой другой.

В системе отопления теплицы основной теплоноситель – это вода. Некоторые системы могут применять воздух, но получается значительно меньшая эффективность. В сравнении с водой, воздух отличается меньшей теплоемкостью.

Как своими руками создать такую теплицу

Коллектор можно сделать своими руками. Данная конструкция отличается простотой, а в виде элементов самодельного коллектора применяется медный змеевик от старых холодильников или обычные полтора литровые пластиковые бутылки.

Благодаря использованию солнечного коллектора можно значительно сэкономить материальные средства.

Можно эффективно использовать параметры самой бутылки в подобных коллекторах. Ее способность по сбору отраженных солнечных лучей позволяет создавать дополнительный теплоизоляционный слой без осуществления поворота за солнцем. Воздух, циркулирующий в бутылке, становится дополнительным изолятором, который разогревается лучами солнца. Именно поэтому в конструкции применяются бутылки, которые позволяют увеличить площадь обогреваемой поверхности трубки с теплоносителем.

Создание основной части

При изготовлении коллектора применяются такие материалы:

  1. Пластиковые бутылки.
  2. Железная бочка.
  3. Алюминиевые, медные или резиновые трубки.
  4. Деревянный брус.
  5. Шланг.
  6. Фольга.
  7. Скотч.
  8. Змеевик от старого холодильника.

Для теплоносителя подойдут трубки из разнообразных материалов: алюминий, медь, резина. Металлический вариант коллектора менее практичен из-за того, что поддается коррозии. Применение металлических трубок делает увеличение стоимости самой конструкции. Пластик использовать не рекомендуется из-за плохой теплопроводимости, подобная установка будет неэффективной.

Сборка самодельного солнечного коллектора не составит особого труда, но значительно сэкономит ваши деньги.

Из практики известно, что лучше применять при самостоятельном изготовлении коллектора только резиновый шланг для транспортировки теплоносителя. Важно, чтобы шланг имел черный цвет. В иных случаях его окрашивают обычной черной эмалью.

Приоритетней использовать матовую краску, чтобы отсутствовал эффект отражения лучей. Можно в теплоносителе использовать запчасти для старых холодильников – змеевики, по которым протекает фреон. После его демонтажа с холодильника, деталь продувается, очищается от мусора и ржавчины.

Сборка осветительного элемента

После проведения сборки, данный коллектор будет иметь вид последовательно соединенных пластиковых бутылок. Желательно использовать чистые, прозрачные и одинаковые экземпляры, а дно и горлышко требуется обрезать. С помощью бутылок составляют сплошную трубу.

Коллектор оборудуется отражателями, представляющие собой квадратики из обычной фольги.

Двухсторонний скотч используется для приклеивания фольги к нежней части бутылки. Другая половина бутылок не должна закрываться.

Для создания каркаса, где располагается коллектор, можно применить обычный брус 5 см. Используют произвольную форму каркаса, которая будет учитывать главное требование, заключающееся в устойчивости. Хомутами крепится труба с теплоносителем.

Простой аккумулятор создается из обычной железной бочки, которую нужно хорошо утеплить и герметически закупорить.

Роль конструкции теплицы

Представленный вариант по созданию самодельного коллектора не является единственным. Существуют другие разные конструкции солнечных коллекторов, которые отличаются своей стоимостью и эффективностью в работе. Любые солнечные коллекторы, которые изготавливаются самостоятельно, имеют более дешевую стоимость, чем заводские варианты.

Если профессионально подходить к выращиванию разных сельскохозяйственный культур в теплицах, то сконструированный своими руками солнечный коллектор не будет способен обеспечить необходимого температурного режима. В этом случае приобретается профессиональный коллектор. В продаже есть различные варианты по исполнению. Они имеют довольно высокую стоимость, но эффективность оправдывает потраченные средства.

Опыт показывает, что в виде изолятора теплицы можно использовать экструдированный пенополистирол. Достоинства его применения заключены в прочности, он не боится влаги и не деформируется, а при этом обеспечивает хорошую сохранность тепла.

Солнечный коллектор своими руками

Большую роль играет конструкция теплицы. Из-за работы с несимметричными конструкциями, эффективность от обогрева теплицы увеличивается на 25% в сравнении с обычными конструкциями.

Строим солнечный коллектор для теплицы самостоятельно, ДачаСадовода


Когда солнце прячется, обычная теплица остывает. Температура снижается в конструкции резко. Солнечные теплицы конструируют таким способом, чтобы в ней

Солнечный коллектор своими руками из поликарбоната

Солнечный коллектор - агрегат, производящий нагрев воды применением солнечной энергии. Для рассмотрения возьмем самый оптимальный и наиболее качественный вариант – схему солнечного коллектора из поликарбоната. Рассмотрим подробно все нюансы данного агрегата.

Солнечный коллектор состоит он из листов ячеистого поликарбоната или же полипропилена. К торцам этих листов и крепится сам коллектор. Монтируют такие листы в специальный жестяной крытый короб. В качестве крышки применяется также лист из того же материала (поликарбоната).

Также можно солнечный коллектор из поликарбоната накрыть и стеклянной крышкой, но стоит учитывать свойства поликарбоната, который, при вполне достаточной светопроницаемости, способен создать достаточный парниковый эффект, равносильный двойному остеклению. Ведь поликарбонат фактически состоит из двух слоев. К тому же, данный материал намного более прочен, чем стекло, позволяя спокойно переносить удары крупных градин. Это поможет сохранить систему в полностью рабочем состоянии даже в том случае, если наружное покрытие подвергнется деформации в процессе града.

Также немаловажно обеспечение теплоизоляции задней стенки коллектора. Оптимальным материалом для этого есть листы пенополистирола, поскольку данный материал не только достаточно легок, но и обладает весьма приемлемой ценой. При использовании полипропиленового утеплителя стоимость конструкции возрастет.

Для коллектора применяют ячеистый поликарбонат, толщины 4-25 мм. Все зависит от количества членов семьи. К примеру, для 4-х человек достаточно будет и поликарбоната 4-8 мм в толщину. Потребуется пара листов разного размера. Первый берется таких же размеров, что и короб. Второй же лист поликарбоната для солнечного коллектора должен входить внутрь короба, имея при этом зазоры необходимой ширины, поэтому он несколько меньше.

Материалы, необходимые для монтажа коллектора:

  • Водопроводная поливинилхлоридная труба, диаметром 3,2 см и длиной 1,5 метра - 2 штуки;
  • Заглушки для труб указанного выше типа – 2 шт;
  • Фиттинговые уголки из полипропилена с металлической резьбой - 2 штуки;
  • Шланги с резьбовым соединением .

Начинаем сборку коллектора из поликарбоната

Вначале, в обоих видах труб проделываются продольные разрезы, в которые впоследствии вставляется поликарбонатный ячеистый лист. Подаваемая снизу вода поступает в желобки листа, где прогревается и за счет эффекта термического сифона поднимается к верхней трубе, откуда отводится к накопителю.

Концы трубы остаются нетронутыми, чтобы в дальнейшем была возможность подключить или заглушить их. Разрез в трубе берется тех же размеров, что и ширина коллекторной части.

При вставке поликарбонатного листа в пропил есть небольшой нюанс. За счет внутреннего напряжения пластика, пропил сходится. Поэтому вставку необходимо производить осторожно, следя за тем, чтобы лист не вошел в трубу, слишком глубоко - это будет мешать нормальной циркуляции воды. Расширять пропил не стоит, поскольку за счет его напряжения труба крепче держится за поликарбонатный лист и происходит компенсация внутрилистового давления. Небольшая подгонка, конечно же, допустима.

Для улучшения сцепления поверхностей с герметиком, края листа поликарбоната обрабатывается наждачной бумагой перед вставкой в трубу. Также нужно обезжирить место будущего стыка.

Следующим этапом производится герметизация стыков трубы с рабочей поверхностью коллектора. Этап этот достаточно важен, поэтому на герметике экономить не стоит. Простой силиконовый не достаточно хорош.

Для большего уровня поглощения солнечного тепла, поверхность солнечного коллектора из поликарбоната необходимо покрасить. Кстати, для обустройства рабочей поверхности лучше применять матовый черный полипропилен. Это поможет лишний раз не отвлекаться на возможные сложности в работах по окрашиванию, да и заодно сэкономит Ваши средства.

По завершении покраски, приходит черед уголков с металлической резьбой. Они закрепляются на концах труб при помощи термоклея. Данное дополнение, как и гибкие шланги с армировкой, значительно облегчит процесс подключения и отключения коллектора.

Устанавливаем солнечный коллектор в короб

В первую очередь производится монтаж листа пенополистирола на заднюю стенку каркаса, для чего чаще всего применяется монтажная пена, или же банально – клей. Дальше – монтаж коллектора. Применяя хомуты из металла, или же пластика, закрепляем коллектор как можно плотнее к пенопласту, производя крепление с максимальным качеством. Финальным этапом идет монтаж поликарбоната с лицевой стороны. Производится крепление с применением саморезов.

Стандартная схема работы системы с солнечным коллектором

На чердак строения устанавливается объемный (160 литров) накопительный бак, утепленный минеральной ватой. Он соединяется с системой подачи горячей воды (отбор горячей воды). Подача горячей воды из бака производится без дополнительного давления, самотеком, для подачи же холодной устанавливается насос, подающий воду из колодца/скважины.

Монтируют солнечный коллектор из поликарбоната таким образом, чтобы верх коллектора не был выше накопительного бака, что позволяет воде циркулировать естественным путем. Горячая будет подниматься в бак, заменяясь холодной. Для этого также трубку, по которой подается горячая вода, крепят чуть выше середины накопителя, что помогает накапливать горячую воду вверху бака.

Еще практикуется установка двух или нескольких установок с солнечными коллекторами из поликарбоната по разным сторонам крыши, что помогает увеличить количество горячей воды, поступающей в бак, а также стабильность ее нагревания.

Солнечный коллектор из поликарбоната, Строй Быт


Солнечный коллектор своими руками из поликарбоната Солнечный коллектор - агрегат, производящий нагрев воды применением солнечной энергии. Для рассмотрения возьмем самый оптимальный и

Солнечные коллекторы - хороший способ сэкономить энергоресурсы.Солнечная энергия - бесплатная, так по крайней мере 6-7 месяцев в году можно получать теплую воду для хозяйственных нужд. А в остальные месяцы - еще и помогать системе отопления.

Солнечный коллектор можно изготовить самостоятельно. Для этого вам понадобятся материалы и инструменты, которые можно купить в большинстве строительных магазинов. Или то, что вы найдете в своем гараже.

Приведенная ниже технология использовалась в проекте "Включи солнце - живи комфортно". Она была разработана специально для проекта немецкой компанией Solar Partner Sued, которая профессионально занимается продажей, монтажом и сервисом солнечных коллекторов и фотоэлетрических панелей.

Главная идея - дешево и сердито. Для изготовления коллектора используются довольно простые и распространенные материалы, которые можно купить в ближайшем магазине, или даже найти у себя в гараже. При этом эффективность коллектора остается на приличном уровне. Она ниже, чем в фабричных моделей, но разница в цене полностью компенсирует этот недостаток.

Существуют различные типы солнечных водонагревателей, но все они основаны на простом принципе: черная поверхность поглощает солнечное тепло, потом это тепло передается воде. Простейшие модели могут быть построены из доступных материалов и не требуют насосов или иного электрооборудования. Эффективный солнечный коллектор может использоваться даже в зимнее время благодаря применению незамерзающих жидкостей - антифризов.

Описанная система солнечного коллектора является пассивной и не зависит от электроэнергии. Она обходится без насосов. Горячая жидкость перемещается между коллектором и баком по принципу конвекции, благодаря простому правилу - нагретая жидкость всегда поднимается вверх.

Принцип работы такого солнечного коллектора таков:

  1. Солнце нагревает жидкость в коллекторе
  2. Нагретая жидкость поднимается по коллектору и трубе в бак-аккумулятора
  3. Когда горячая жидкость поступает в теплообменник, установленный в бак с водой, тепло передается от теплообменника воде в баке
  4. Жидкость в теплообменнике, охлаждаясь, перемещается вниз по спирали и поступает из отверстия в нижней части бака обратно в коллектор
  5. Вода, нагретая в баке, аккумулируется в верхней части бака
  6. Холодная вода из водопроводной сети / резервуара поступает в нижнюю часть бака
  7. Нагретая вода отбирается через выходное отверстие в верхней части бака.

Пока на коллектор светит солнце, жидкость в трубах абсорберу нагревается, перемещается в бак и таким образом постоянно циркулирует. Этот процесс обеспечивает нагрев воды в баке всего за несколько часов при интенсивном солнечном излучении.

Основной элемент коллектора - абсорбер. Он состоит из металлического листа, который приварен к металлическим трубам. Несколько труб устанавливаются вертикально и привариваются к двум трубам большого диаметра, расположенных горизонтально. Эти толстые трубы для входа и выхода жидкости должны быть расположены параллельно друг другу. А входное отверстие для жидкости (нижняя часть абсорбера) и выходное отверстие (верхняя часть абсорбера) должны располагаться с разных сторон панели (диагонально). Для соединения более толстых трубах необходимо просверлить отверстия под диаметр вертикальных труб.

Для лучшей передачи тепла от металлической пластины к трубам очень важно обеспечить максимальный контакт пластины с трубами. Сварка должна быть вдоль всего элемента. Важно, чтобы металлический лист и трубы плотно прилегали друг к другу.

Абсорбер укладывается в деревянную раму и накрывается стеклом, которое защищает коллектор и создает внутри эффект теплицы.

Применяется обычное оконное стекло. Оптимальная толщина - 4 мм, при этом сохраняется хорошее соотношение надежности и веса. Желательно нужную площадь стекла разделять на несколько частей. Так удобнее и безопаснее работать с ним.

Использование нескольких слоев стекла или стеклопакета даст прирост эффективности, но увеличит вес конструкции и стоимость системы.

Солнечные лучи проходят через стекло и нагревают коллектор, а остекление предотвращает утечку тепла. Стекло также препятствует движению воздуха в абсорбере без него коллектор быстро терял бы тепло из-за ветра, дождя, снега или низкие внешние температуры в целом.

Раму следует обработать антисептиком и краской для наружных работ.

В корпусе делаются сквозные отверстия для подачи холодной и отвода нагретой жидкости из коллектора.

Сам абсорбер красят жаростойким покрытием. Обычные черные краски при высоких температурах начинают шелушиться или испаряться, что приводит к потемнению стекла. Краска должна полностью высохнуть, прежде чем вы закрепите стеклянное покрытие (для предотвращения конденсации).

Под абсорбером закладывается утеплитель. Чаще всего используется минеральную вату. Главное, чтобы он выдерживал довольно высокие температуры в течение лета (иногда более 200 градусов).

Снизу раму закрывают ОСБ плитой, фанерой, досками и т.п. Основное требование к этому этапу - убедиться, что низ коллектора надежно защищен от попадания влаги внутрь.

Для закрепления стекла в раме делают пазы, или крепят планки по внутренней стороне рамы. При расчете размеров рамы следует учитывать, что при изменении погоды (температуры, влажности) в течение года ее конфигурация будет немного меняться. Поэтому на каждой стороне рамы оставляют несколько миллиметров запаса.

На паз или планку крепится резиновый оконный уплотнитель (D- или Е-образный). На него кладется стекло, на которое таким же образом наносится уплотнитель. Сверху это все закрепляется оцинкованной жестью. Таким образом, стекло надежно закреплено в раме, уплотнитель защищает абсорбер от холода и влаги, а именно стекло не повредится, когда деревянная рама будет "дышать".

Стыки между листами стекла изолируются уплотнителем или силиконом.

Накопительный бак. Здесь хранится нагретая коллектором вода, поэтому стоит позаботиться о его термоизоляции.

В качестве бака можно использовать:

  • неработающие электрические бойлеры
  • кислородные баллоны
  • бочки для пищевого использования

Главное - помнить, что в герметичном баке будет создаваться давление в зависимости от давления водопроводной системы, к которой он будет подключен. Не каждая емкость способна выдерживать давление в несколько атмосфер.

В баке делают отверстия для входа и выхода теплообменника, ввода холодной воды, и забора нагретой.

В баке размещается спиральный теплообменник. Для него используют медь, нержавеющую сталь, или пластик. Нагретая через теплообменник вода будет подниматься вверх, поэтому его следует поместить в нижней части бака.

Коллектор соединяется с баком с помощью труб (например металлопластиковых или пластиковых), проведенные от коллектора к баку через теплообменник и обратно в коллектор. Здесь очень важно предотвратить утечку тепла: путь от баке до потребителя должен быть максимально коротким, и трубы должны быть очень хорошо изолированными.

Расширительный бачок - это очень важный элемент системы. Он представляет собой открытый резервуар, расположенный в крайней верхней точке контура циркуляции жидкости. Для расширительного бачка можно использовать как металлическую, так и пластиковую посуду. С ее помощью контролируется давление в коллекторе (из-за того, что жидкость от нагрева расширяется, могут треснуть трубы). Для снижения потерь тепла бачок также необходимо изолировать. Если в системе присутствует воздух, то оно также может выходить через бачок. Через расширительный бачок происходит также наполнения коллектора жидкостью.

Более особенностей строения, необходимые материалы и правила установления солнечного коллектора можно узнать, загрузив практическое пособие на веб-сайте проекта. опубликовано